

Seek a minor Sun: The Distrbution of Habitable Planets in the Hertzsprung-Russell-Rosenberg Diagram

Eric Gaidos Department of Geology & Geophysics, University of Hawaii and Observatoire de Sauverny, University of Geneva

Pluto Encounter: July 14, 2015

Mars Encounter: July 14, 1965

Points of Darkness in the Sky of Modern Astronomy

Most Small Candidate Planets in the "Habitable Zone" Orbit M Dwarfs

At least 75% of nearby stars are M dwarfs

"Confirmed" Earth-Size Planets in the Habitable Zone

Habitable "Real Estate" in the Galaxy

SpType	5 pc Sample No. of Stars	EHZ (AU)	Total 10 pc Sample No. of Stars	EHZ (AU)
A	0(1)		3 (4)	13.2
F	0(1)		4 (6)	4.9
G	3	2.6	14 (21)	11.9
Κ	7	2.9	34 (35)	15.4
М	48(50)	3.3	384*(400)*	26.1*

Table 10 Total EHZ by Spectral Type

Cantrell et al. (2013)

A New Temperature-Metallicity-Radius Relationship for M Dwarf Stars

Adaptive Optics and Non-Redundant Aperture Masking Imaging

Bin-less Estimation of the Planet Population

Method of Iterative Monte Carlo (MIMC)

Silburt et al. (2015)

Why don't we live around an M dwarf star?

Emergence of Intelligence on Earth: Just in Time?

Why so early?

Why so late?

- Complete coincidence
- Life evolves inevitably and rapidly on suitable planets (Sagan conjecture)
- Life (and intelligence) almost never evolves and the timing is a selection effect (Carter conjecture)
- Our understanding of lifetime of Earth's biosphere is incorrect

The Carter Conjecture and Statistics of Rare Events

"Hard Steps" in the Evolution of Life

t_{max} = maximum time for success t_e = mean time between successes

 $Easy: t_e << t_{max}$ $\langle t \rangle = t_e$ $p(success) \approx 1$

$$Hard: t_e >> t_{max}$$
$$\langle t \rangle = \frac{1}{2} t_{max}$$
$$p(success) = \frac{t_{max}}{t_e} << 1$$

Carter (1983)

N hard steps:
$$\langle t_N \rangle = \frac{N}{N+1} t_{\text{max}} \quad p_N \sim \left(\frac{t_{\text{max}}}{t_e}\right)^N$$

For Earth:
 $t_{\text{max}} = 5.2 \text{ Gyr and } t_N = 4.5 \text{ Gyr} \rightarrow \text{N} \sim 6$

If N ≠ 1 Which Evolutionary Steps Were "Hard"?

Quantifying the Odds

If N = 6 then M dwarf star hosts favored by a factor of 400,000,000

Avoiding the Paradox

Are M Dwarf Planets Dead?

- High collision speeds and devolatilization of planets (Lissauer 2007)
- Coronal mass ejections and erosion of atmospheres (Lammer et al. 2007)
- Stellar spectrum and climate stability (Shields et al. 2014)
- Tidal locking and climate stability (Jorgi 1997, Yang et al. 2013)
- High UV and loss of atmospheres (Luger & Barnes 2015)

Planets around M Dwarfs are not Earth-like or Habitable?

N is sensitive to the value of t_{max} $N = \frac{t_{max}}{t_{max}} - 4.5 \, Gyr$

What is t_{max} (lifetime of biosphere) for the Earth?

- Tractable climate problem
- Corresponds to the inner edge of the habitable zone
- Currently only a prediction by models
- Venus provides only an endpoint
- Exoplanets could provide answers, or at least constraints
- A view of Earth's future, and a constraint on t_M ... and N?

Cautionary Tale: K/M Dwarf Planets with Mass Constraints

First Spacecraft "Image" of Another Planet

