Seek a minor Sun: The Distrbution of Habitable Planets in the Hertzsprung-Russell-Rosenberg Diagram

Eric Gaidos
Department of Geology \& Geophysics, University of Hawaii and Observatoire de Sauverny, University of Geneva

Jupiter
Venus

A Planetary Conjnction from Cyprus

Pluto Encounter: July 14, 2015

Mars Encounter: July 14, 1965

Points of Darkness in the Sky of Modern Astronomy

Most Small Candidate Planets in the "Habitable Zone" Orbit M Dwarfs

At least 75\% of nearby stars are M dwarfs

"Confirmed" Earth-Size Planets in the Habitable Zone

Orbits of
Kepler-186

Potentially habitable planets
Too hot for life

Quintana et al. (2014)

Habitable "Real Estate" in the Galaxy

Table 10
Total EHZ by Spectral Type

SpType	5 pe Sample No. of Stars	EHZ (AU)	Total 10 pc Sample No. of Stars	EHZ (AU)
A	$0(1)$	\cdots	$3(4)$	13.2
F	$0(1)$	\cdots	$4(6)$	4.9
G	3	2.6	$14(21)$	11.9
K	7	2.9	$34(35)$	15.4
M	$48(50)$	3.3	$384^{*}(400)^{*}$	26.1^{*}

Cantrell et al. (2013)

A New Temperature-Metallicity-Radius Relationship for M Dwarf Stars

Adaptive Optics and Non-Redundant Aperture Masking Imaging

Bin-less Estimation of the Planet Population

 Method of Iterative Monte Carlo (MIMC)

Silburt et al. (2015)

Why don't we live around an M dwarf star?

Emergence of Intelligence on Earth: Just in Time?

Why so early?

- Complete coincidence
- Life evolves inevitably and rapidly on suitable planets (Sagan conjecture)
- Life (and intelligence) almost never evolves and the timing is a selection effect (Carter conjecture)
- Our understanding of lifetime of Earth's biosphere is incorrect

The Carter Conjecture and Statistics of Rare Events

"Hard Steps" in the Evolution of Life

$$
\begin{aligned}
& t_{\max }=\text { maximum time for success } \\
& t_{e}=\text { mean time between successes }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Easy: } t_{e} \ll t_{\max } \\
& \langle t\rangle=t_{e} \\
& p(\text { success }) \approx 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hard: } t_{e} \gg t_{\max } \\
& \langle t\rangle=\frac{1}{2} t_{\max } \\
& p(\text { success })=\frac{t_{\max }}{t_{e}} \ll 1
\end{aligned}
$$

Carter (1983)

The Case of Multiple Hard Steps

If $\mathrm{N} \neq 1$ Which Evolutionary Steps Were "Hard"?

Use of suntight as energy souriee
Mutticellutarity
Evolution र्ण large brains of "intelligence"
Oxygenic photosynthesis?

Why not M dwarfs?

- Many more M dwarfs
- More planets per star
- Longer main sequence life

Quantifying the Odds

Probability of intelligence around a star of mass M_{s}

$$
P\left(M_{S}\right)=n_{\text {stars }}\left(M_{S}\right) x p_{N}\left(t_{\max }\right)
$$

Number of stars (IMF)

$$
n_{\text {stars }} \sim \frac{1}{M_{S}^{3.6}}
$$

Time planet spends in the HZ

$$
t_{\max } \sim \frac{1}{M_{S}^{3}}
$$

Probability of N successes
$p_{N} \sim t_{\text {max }}^{N}$
Resulting scaling law $\quad P\left(M_{S}\right) \sim \frac{1}{M_{S}^{3 N+3.6}}$
If $N=6$ then M dwarf star hosts favored by a factor of 400,000,000

Avoiding the Paradox

Are M Dwarf Planets Dead?

- High collision speeds and devolatilization of planets (Lissauer 2007)
- Coronal mass ejections and erosion of atmospheres (Lammer et al. 2007)
- Stellar spectrum and climate stability (Shields et al. 2014)
- Tidal locking and climate stability (Jorgi 1997, Yang et al. 2013)
- High UV and loss of atmospheres (Luger \& Barnes 2015)

Planets around M Dwarfs are not Earth-like or Habitable?
e.g., insufficient photosynthetic active radiation (PAR)

N is sensitive to the value of t
 max

$$
N=\frac{t_{\max }}{t_{\max }-4.5 G y r}
$$

What is $\mathrm{t}_{\text {max }}$ (lifetime of biosphere) for the Earth?

- Tractable climate problem
- Corresponds to the inner edge of the habitable zone
- Currently only a prediction by models
- Venus provides only an endpoint
- Exoplanets could provide answers, or at least constraints
- A view of Earth's future, and a constraint on $\mathrm{t}_{\mathrm{m}} \ldots$ and N ?

Cautionary Tale: K/M Dwarf Planets with Mass Constraints

First Spacecraft "Image" of Another Planet

