What you need to know to use the ExoMol Line Lists for Studying Exoplanetary Atmospheres

Dr Laura K. McKemmish

University College London

July 14th, 2015

@EXOMOL

Molecules in Space

Observations

ExoMol Theory

Result!

Problems

Vanadium Monoxide

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → のへぐ

COOL STARS

► TiO, VO ► H₂O

@exomol

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

BROWN DWARFS

► CH₄ ► CrH, TiH

@exomol

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

HOT "JUPITER" EXOPLANETS

► TiO, VO ► H₂O, CO

@exomol

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

EARTH-LIKE EXOPLANETS

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Ultimate Goal

@exomol

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

Vanadium Monoxide

▲□▶▲□▶▲≡▶▲≡▶ ≡ めん⊙

ASTRONOMERS METHODOLOGY

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

WHAT NEXT?

@EXOMOL

What frequencies of light?

How much light is absorbed?

▲□▶ ▲圖▶ ▲≧▶ ▲≣▶ = のへで

GOAL

@exomol

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

A note on O_2

 O_2 is a weak absorber of infrared and visible light (this is why it is not a greenhouse gas)!

Molecules in Space

@EXOMOL

OBSERVATIONS

ExoMol Theory

Result!

Problems?

Vanadium Monoxide

▲□▶</li

EXOMOL METHODOLOGY

Finding the **frequency** and **intensity** of the transitions of small hot molecules in astrophysical environments using:

Molecules in Space

Observations

ExoMol Theory

Result!

PROBLEMS

Vanadium Monoxide

▲□▶▲舂▶▲≧▶▲≧▶ ≧ めんぐ

EXOMOL METHODOLOGY

Finding the **frequency** and **intensity** of the transitions of small hot molecules in astrophysical environments using:

- Lots of PhD students
- Some Masters students
- Post-docs
- Supervisors

@EXOMOL

Molecules in Space

Observations

ExoMol Theory

Result!

PROBLEMS

The Core of All Spectroscopy

- ► Initial Energy Level
- ► Final Energy Level
- Transitions Between Them

Molecules in Space

@EXOMOL

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

The Core of All Spectroscopy

- Initial Energy Level
- ► Final Energy Level
- Transitions Between Them

Molecules in Space

@EXOMOL

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Vanadium Monoxide

Energy levels: Need Potential Energy Curves.

Transitions: Need Dipole Moment Curves.

TWO SOURCES OF INFORMATION

Neither is good enough by themselves, so we use both!

@EXOMOL

ExoMol Theory

@EXOMOL

EXOMOL METHODOLOGY

The Result: Line Lists

ExOMol [±]UCL About Data Publications ExoMol Theory Login Molecule Search Please select a molecule below or search for a molecule here: Search Metal Hydrides Other Hydrides Metal Oxides Other Oxides BeH NH CaO SO ScH CH MaO CO TiO AIH SH NO VH OH SiO NaH AIO Triatomics and Larger MqH Molecules CO2 LIH H₂CO NiH **SO**₃ FeH CaH HNO₃ TiH H₂O

●□▶ ●□▶ ● □ ▼ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

@EXOMOL

EXOMOL OUTPUT: LINE LISTS

	Login	SPACE
Data for ⁹ BeH		Observat
Yadin: line list		ExoMol 7
Rovibrational line lists for BeH, MgH and CaH		Result!
9Be-1HYadin.states [48.3 KB]		
9Be-1HYadin.trans [1.9 KB]		Problems
README.txt [1.9 KB]		
References		VANADIUM
 B. Yadin, T. Veness, P. Conti, C. Hill, S. N. Yurchenko, J. Tennyson, "ExoMol line lists – I. The rovibration: spectrum of BeH, MgH and CaH in the X²2⁺ state", Monthly Notices of the Royal Astronomical Society 42 34-43 (2012). [link to article][12Y4VeCo.XH] 	al i,	MONOXIDE
	_	
Yadin: partition function		
Rovibrational line lists for BeH. MoH and CaH		

@EXOMOL

9Be-1H__Yadin.pf References

 B. Yadin, T. Veness, P. Conti, C. Hill, S. N. Yurchenko, J. Tennyson, "ExoMol line lists – I. The rovibrational spectrum of BeH, MgH and CaH in the X²Z⁺ state", Monthly Notices of the Royal Astronomical Society 425, 34-43 (2012). [link to article][123VeCo.XH]

@EXOMOL

The Result: Line Lists

1	16410.168800	32	1.5 -	11	1 e	
2	16402.093900	16	0.5 +	11	0 e	
3	15721.783500	32	1.5 -	10	1 e	
4	15710.467200	16	0.5 +	10	0 e	
5	14731.961100	32	1.5 -	9	1 e	
6	14718.826200	16	0.5 +	9	0 e	
7	13541.079500	32	1.5 -	8	1 e	
8	13526.656400	16	0.5 +	8	0 e	
9	12198.490600	32	1.5 -	7	1 e	
10	12183.050600	16	0.5 +	7	0 e	
11	16426.182400	48	2.5 +	11	2 e	
12	16426.182400	32	1.5 +	11	2 f	
13	16410.168800	16	0.5 -	11	1 f	
14	10732.929200	32	1.5 -	6	1 e	
15	10716.629200	16	0.5 +	6	0 e	
16	9162.317600	32	1.5 -	5	1 e	
17	9145.253300	16	0.5 +	5	0 e	
18	7498.109100	32	1.5 -	4	1 e	
19	7480.340100	16	0.5 +	4	0 e	
20	5747.698100	32	1.5 -	3	1 e	
21	5729.261900	16	0.5 +	3	0 e	
22	3915.950700	32	1.5 -	2	1 e	
23	3896.871500	16	0.5 +	2	0 e	
24	2006.125100	32	1.5 -	1	1 e	

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Vanadium Monoxide

*.states file contains all energy levels, with quantum numbers. There are often millions of energy levels!

@EXOMOL

EXOMOL OUTPUT: LINE LISTS

*.trans file

1	2 9.0173e-06
3	4 6.4289e-05
5	6 1.3058e-04
7	8 1.8319e-04
9	10 2.1458e-04
11	1 8.2197e-05
12	13 8.2197e-05
14	15 2.2387e-04
16	17 2.1512e-04
18	19 1.9373e-04
20	21 1.6431e-04
22	23 1.3067e-04
24	25 9.6070e-05
26	27 6.3375e-05
28	3 6.0976e-04
29	30 6.0976e-04
31	11 2.7140e-04
32	12 2.7140e-04
33	5 1.2468e-03
34	35 1.2468e-03
36	7 1.7535e-03
37	38 1.7535e-03
39	9 2.0567e-03
40	41 2.0567e-03
42	31 5.8075e-04
43	32 5.8075e-04
44	14 2.1477e-03
45	46 2.1477e-03
47	28 2.1603e-03

Three columns

- ► Initial energy level (ID)
- ► Final energy level (ID)
- Strength of transition (Einstein coefficient)

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

Problems

Vanadium Monoxide

Billions of transitions are common!

Sometimes (often?) billions of lines is too much. We aim to help here too.

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Vanadium Monoxide

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ □▶

Sometimes (often?) billions of lines is too much. We aim to help here too.

 Cross-sections of absorption at different temperatures - Available now on ExoMol website! @EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Vanadium Monoxide

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少へぐ

Sometimes (often?) billions of lines is too much. We aim to help here too.

- Cross-sections of absorption at different temperatures - Available now on ExoMol website!
- Currently developing k coefficient tables

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Sometimes (often?) billions of lines is too much. We aim to help here too.

- Cross-sections of absorption at different temperatures - Available now on ExoMol website!
- Currently developing k coefficient tables
- We can 'trim' the line list for particular applications quite easily; just tell us what temperature, what frequency range etc.

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Sometimes (often?) billions of lines is too much. We aim to help here too.

- Cross-sections of absorption at different temperatures - Available now on ExoMol website!
- Currently developing k coefficient tables
- We can 'trim' the line list for particular applications quite easily; just tell us what temperature, what frequency range etc.
- Ask us for anything else that will be useful

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Take home message:

- ► These line lists often take PhDs.
- ► They are useless if they are not used.
- So anything we can do to maximise their usefulness to you - let us know!

laura.mckemmish@gmail.com www.exomol.com/ @EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

Problems?

Vanadium Monoxide

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 → のへぐ

EXOMOL PERIODIC TABLE

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

Problems?

@EXOMOL

Result!

Input Data: Line Lists, Physics

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへで

Input Data: Line Lists, Physics **Input Observation**: Spectrum from star/ exoplanet

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

Vanadium Monoxide

▲□▶▲□▶▲三▶▲三▶ 三 少�?

Input Data: Line Lists, Physics **Input Observation**: Spectrum from star/ exoplanet

Method: Computational Models of Atmosphere

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

Input Data: Line Lists, Physics **Input Observation**: Spectrum from star/ exoplanet

Method: Computational Models of Atmosphere

Output: Characteristics of atmosphere; pressure, temperature, molecular composition and more!

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

Vanadium Monoxide

▲□▶▲□▶▲三▶▲三▶ ○♀⊘

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

Vanadium Monoxide

Some Output So Far

2MASS 0559-14

Yurchenko et al PNAS, 111, 9379 (2014)

Cushing Rayner, Vacca (2005)

◆□▶ ◆□▶ ◆ 差▶ ◆ 差▶ を つへ(

Output Hopefully

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

Vanadium Monoxide

▲□▶▲□▶▲≣▶▲≣▶ ▲ ■ のへで

IF THERE ARE PROBLEMS

Are they caused by the ExoMol Line Lists?

Questions to ask:

- 1. Is it a big molecule?
- 2. Is there little experimental data?
- 3. Does the molecule contain a transition metal?
- 4. Is it an electronic transition?
- 5. Is it a high energy transition?
- 6. Is your error at high resolution?
- 7. Is the initial state very high in energy?
- 8. Is your line list not from the ExoMol project?

If **Yes**, then it could be the <u>line list</u>. If **No**, then it is probably the astrophysical model. @EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS?

My Molecule

Innoculous?

@exomol

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

VANADIUM Monoxide

My Molecule

AOLECULES IN

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

Result!

PROBLEMS

VANADIUM Monoxide

<□ ▶ < @ ▶ < 差 ▶ < 差 ▶ 差 の < @

CURRENT SPECTRA

@EXOMOL

Molecules in Space

OBSERVATIONS

ExoMol Theory

RESULT

PROBLEMS

VANADIUM Monoxide

Compared to Previous Spectra

@EXOMOL

▲□▶▲□▶▲三▶▲三▶ ④�?