The exploration of exoplanets: What can we learn from solar system synergies?

Pluto, New Horizons July 13, 2015

Thérèse Encrenaz LESIA, Observatoire de Paris Pathways to Habitable Planets – II Bern, July 13 – 17, 2015

Outline

- Atmospheric composition: what to expect for exoplanets?
- What are we learning from transit spectroscopy?
- Infrared spectroscopy : reflected starlight and thermal emission
- Characterizing exoplanets' atmospheres: How to optimize the observations -> The ARIEL mission

Atmospheric composition of planets: carbon and nitrogen in the protosolar disk (thermochemical equilibrium)

HIGH T (LOW P) LOW T (HIGH P) • CH_{4} + $H_{2}O$ $CO + 3 H_{2}$ <-> $N_2 + 3 H_2$ • 2 NH₃ <-> +• CO + H_2O $CO_2 + H_2$ <-> **Giant planets Rocky** planets -> H₂, CH₄, NH₃, H₂O -> CO₂, N₂, H₂O, CO

Atmospheric composition of giant exoplanets as a function of stellar distance D

Goukenleuque et al. 1999

The solar system: A planetary inventory

- « Planets » with an atmosphere
- Rocky planets (M < 10 M_E, D < Snow Line)
 Mars/Venus-type (CO₂, N₂ + H₂O)
 Earth-type (N₂, O₂ + H₂O)
- Icy planets (M < 10 M_E, D > Snow Line)
 Titan/Triton/Pluto-type (N₂, CH₄ + CO)
- Giant planets (M > 10 M_E, D > Snow Line)
 - Jupiter-type (H_2 , CH_4 , $NH_3 + H_2O$)
 - Neptune-type (H₂, CH₄)
- Bare « planets »
- Mercury/asteroid-type (refractories) (M < M_E, D < Snow Line)
- TNO-type (ices) (M < M_E, D > Snow Line)

Exoplanets: Which atmospheric composition?

- Known parameters: mass, stellar distance, stellar type
- Estimate of the equilibrium temperature: $[F^*/D^2](1-a) = 4 \sigma Te^4$
- -> Position wrt the snow line (SL)
 - SL: About 180 K at the time of planetary formation $(H_2O \text{ condensation})$

D = 3-4 AU at the time of solar system formation (T about 130 K today)

• -> Estimate of the atmospheric composition

What kind of atmosphere can we expect? (Solar-type star)

<u>Te (K)</u>		1200	850 4	60 220)	120	50	
<u>Stellar dist.</u>	0.05	50.1	0.3	1.5		5.0	20.0	כ
(AU)					1			
Small Exopla	net	< RC	CKY PLA	NETS	>	<ic< td=""><td>Y PLANETS</td><td>></td></ic<>	Y PLANETS	>
(0.1 - 10 M _E)		Mars/Venus-type				Titan-type		
		(CO ₂ , N	Ν ₂ , CO, H	l ₂ 0)	1		(N ₂ , CH ₄	<i>,</i> CO)
		Ea	rth-type		1			
		(N ₂ ,O ₂ ·	+H ₂ O oc	ean)	I			
Giant Exopla	net	<ho1< td=""><td></td><td>RS></td><td>T</td><td>< GAS</td><td>EOUS > <ic< td=""><td>CY GIANTS></td></ic<></td></ho1<>		RS>	T	< GAS	EOUS > <ic< td=""><td>CY GIANTS></td></ic<>	CY GIANTS>
(10 - 1000 M _E)					I	GIA	NTS	
					1	Jupite	r-type Neg	otune-type
		H ₂ ,CC	D,N ₂ ,H ₂ C)	1	H ₂ ,CH	4,NH ₃ ,H ₂ O	H_2, CH_4
		-		SNOW	LINE,	, T = 180) K	
			NB: Ve	ery simp	ole m	odel		
	(Sta	tic mode	el at therr	nocher	nical	equilibri	ium, no migr	ration)

Position of the snow line for various stellar types T(SL) = 180 K

Exoplanets: Which atmospheric composition?

Three main classes of atmospheres:

- (1) H/He dominated (massive planets)
- (2) Thin silicate atmospheres(rocky planets)
- (3) $H_2O/CO_2/N_2$ atmospheres (formation close to the snow line)

Transit spectroscopy of an exoplanet: An emerging field

Primary transits

- Transmission spectroscopy
- Probes the upper atmosphere at terminator
- Secondary transits
 - Direct emission (reflected or thermal)
 - Probes the dayside of the atmosphere

2 main targets HD209458b and HD189733 b + others

Primary transits

Amplitude of the absorption:

A ~ 5 x $[2R_{p}H/R^{*2}]$ H = $RT_{e}/\mu g$ g = GM_{p}/R_{p}^{2} = 25 M_{J}/R_{p}^{2} (Jovian units) $T_{e} = (1-a)^{0.25} x 331.0 x [T^{*}/5770.] x R^{*0.5}/D^{0.5}$ $\mu = 2.4$ (for a H₂-He atm.) -> A = 1.4 x 10⁻⁶ x R_p x H/R^{*2} -> -> Favourable for hot, inflated Jupiters (typically a few 10⁻⁴)

 $I = I_{o} e^{-\tau}$ $d\ell$ $I = I_{o} e^{-\tau}$ $d\ell$ $R_{p} = R_{p} + z^{*} + dz^{*}$ $R_{p} + z^{*} = R_{p} + z_{max}$ Planet Star

Detection of atmospheric species (always in absorption): Na, K, H, Cs, haze (visible, HST) H_2O , CO, CO₂, CH₄ (IR, HST + Spitzer)

Synthetic transmission spectra of hot Jupiters

G. Tinetti et al. ApJ 2007

Primary transit, HD189733b – Data: HST NICMOS

Swain, Vasisht, Tinetti, Nature, 2008

Secondary transits

• The dayside of the planet is observed directly

$$F_{II}(\lambda) = \left(\frac{R_p}{R_\star}\right)^2 \frac{F_p(\lambda)}{F_\star(\lambda)}$$

- In the case of hot exoplanets, the thermal component dominates beyond 1μm
 - > Two possible approximations in the thermal regime:
 - $-\rho 1 = [R_P/R^*]^2 \times [T_e/T^*]^4$ ($\lambda = 1-2 \ \mu m$) (a few 10⁻⁴)
 - $-\rho 2 = [R_P/R^*]^2 \times [T_e/T^*] (\lambda > 20 \ \mu m)$ (a few 10⁻³)
- > Favourable for hot and massive planets transiting low-mass stars
- NB: For interpreting the thermal emission, the thermal profile must be known

Secondary transit, HD189733b – Data: HST/Spitzer

First results from transit spectroscopy on hot Jupiters:

- 1. Temperature inversion in some hot Jupiters
- 2. Departure from thermochemical equilibrium

HD 189733b: CO, N₂ expected... but CH_4 , H_2O , NH_3 observed HD 209458b: CO, N₂ expected... but CH_4 , CO_2 observed

Departure from thermochemical equilibrium: 1. Photolysis

2. Vertical mixing

Venot et al. 2012

An example of photochemistry in the giant planets: Hydrocarbons in Neptune

An example of vertical mixing in the giant planets: PH_3 in Jupiter and Saturn

PH₃ is stronger in Saturn because the vertical mixing is stronger

Spectroscopy of an exoplanet

- Reflected starlight component (UV, visible, near-IR)
 - Albedo is about 0.3 for most of solar-system planets
 - Absorption lines or bands in front of stellar blackbody
- Thermal component (IR, submm & mm)
 - Mostly depends upon the temperature of the emitting region
 - Emission lines in the stratosphere, absorption lines in the troposphere (function of T(P))

Reflected stellar light vs thermal emission - Solar-type stars

Solar-type stars:

At 0.05 AU, the thermal radiation dominates even at 1 μ m At 1 AU, both radiations are equal around 3 μ m

Reflected stellar light vs thermal emission: M-type stars

M-type stars: At 0.05 AU, the thermal radiation dominates above 1.5 μ m At 1 AU, both radiations are equal at 8 μ m

Thermal structure of planetary atmospheres

The IR spectrum of Mars (ISO-SWS)

Spectral signatures: CO₂, H₂O, CO Lellouch et al., 2000

Thermal emission: the case of Mars

The atmosphere of two giant planets: The thermal component Jupiter & Saturn - ISO-SWS

Knowing the thermal profile is essential for identifying molecules

Log flux (Jy)

How to optimize the spectroscopy of exoplanets?

- The IR range is best suited for analysing neutral species
 UV, visible -> atoms, ions, radicals
- Include both reflected & thermal regimes
 - > Allows to remove the T(P) degeneracy
 - > In the thermal range: [Planet/Star] flux ratio increases with λ
 - > Best choice : 1 -20 μ m
- Observe several bands of the same molecule
 - > Different band strengths probe different atmospheric levels
- Separate adjacent components of a given molecular band
 - > Constraint on the resolving power

An inventory of expected signatures						
	1-5 μm	6-30 μm				
H ₂ O	1.38, <mark>2.69</mark>	6.2, >20				
CO ₂	1.44, 2.0, <mark>4.25</mark>	15.0				
СО	2.35 <i>,</i> 4 . 7					
CH_4	1.65, 2.2, <mark>3.3</mark>	7.7				
C_2H_2	3.0	13.7				
C_2H_6	3.4	12.1				
NH_3	3.0, <mark>6.1</mark>	10.5				
HCN	3.0	14.0				
H ₂	2.12, 4.5	17, 28				
H_3^+	2.0, 4.0					

Spectral signatures of a few important molecules (10 cm-am, P = 1bar)

The need for a high-temperature molecular database

Constraint on the spectral resolving power

- At high temperature, the molecular bands are strongly broadened

- The resolving power should allow the separation of two adjacent J-components
- R = 300 is OK for all molecules with $2B_0 > 10 \text{ cm}^{-1}$ (excludes CO and CO₂) (in the case of space observations)

The ARIEL Mission

- Cosmic Vision M4 candidate, under assessment study
- 1-m effective diameter telescope at L2
- Spectral range: 2-8 μ m, R = 180
- Method: Transit spectroscopy of 150-300 exoplanets
- Targets: Gas giants -> super-Earths, hot -> temperate, F-> M stars
- 3-year mission
- Objective: Atmospheric composition of a large sample of exoplanets

Talk by Giovanna Tinetti on Thursday July 16

Howard et al. 2013

A last message....

-Let's go **step by step**: the spectroscopy of exoplanets will improve as in the case of the solar system planets

-Let's try to understand first the whole variety of exoplanets

