BLAZING THE TRAIL: RESOLVING TERRESTRIAL PLANETS WITH ELTS?

Michael R. Meyer Institute for Astronomy Department of Physics

Silvan Hunziker Christophe Lovis (Geneva) Sascha Quanz Hans Martin Schmid Ignas Snellen (Leiden) Stephane Udry (Geneva) and many others...

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich #PathwaysII Bern, Switzerland 13 July, 2015

The trail thusfar...

Pepe, Ehrenreich, & Meyer, 2014, Nature, V513, 358

Notching planets with 1 m/s RV...

Pepe, Ehrenreich, & Meyer, 2014, Nature, V513, 358

PRECISION RV (< 1 m/s) CURRENT/PLANNED

Instrument/	Telescope/	Start of	Band	Spectral resolution	Efficiency	Precision
Technique	Observatory	operations	[µm]		[%]	[m, s ⁻¹]
HARPS ⁵⁵	3.6-m	2003	0.38-0.69	115,000	6	< 0.8
	ESO La Silla					
PFS ¹⁸⁸	Magellan II	2010	0.39 - 0.67	38,000 - 190,000	10	1
Self calibration	Las Campanas					
CHIRON ¹⁹⁰	1.5-m	2011	0.41-87	80,000	15	< 1
Self calibration	CTIO					
HARPS-N ¹⁹¹	TNG	2012	0.38-0.69	115,000	8	< 1
Sim. reference	ORM					
LEVY ¹⁹²	APF	2013	0.37-0.97	114'000-150'000	10 - 15	< 1
Self calibration	Lick					
IRD ⁹²	Subaru	2014	0.98-1.75	70,000	TBD	1
Sim. reference	Mauna Kea					
CARMENES ⁹¹	Zeiss 3.5-m	2015	0.55-1.7	82,000	10 - 13	1
Sim. reference	Calar Alto					
PEPSI ⁶⁴	LBT	NA	0.38-0.91	120,000 -320,000	10	NA
Sim. reference	Mt. Graham					
ESPRESSO ⁶²	All UTs-VLT	2017	0.38-0.78	60'000 - 200,000	6 - 11	0.1
Sim. reference	ESO Paranal					
SPIROU ⁹⁵	CFHT	2017	0.98-2.35	70,000	10	1
Sim. reference	Mauna Kea					
G-CLEF ⁶¹	GMT	2019	0.35-0.95	120,000	20	0.1
Sim. reference	Las Campanas					

Follow-up with transit e.g. CHEOPS (more likely edge-on) but imaging tough.

Objects consisting of many mirrors may be slightly smaller or arrive later than they currently appear.

ELTs and their approved instruments

LBTI: NOMIC, LMIRCam (2015), LINC-NIRVANA GMT: G-CLEF (2019), GMACS (2019), GMT-IFS (2021) TMT: IRIS, MOBIE, IRMS (first light in 2022) E-ELT: HARMONI and MICADO (2024), METIS (2025)

LBTI (P. Hinz talk Thurs.)

Name	Spec. Type	Dist. [pc]	Avrg. Nr. of planets detectable
Sirius A	A0.5V	2.6	0.3415
Procyon A	F5 IV-V	3.5	0.0382
Altair	A7 V	5.1	0.0063
Vega	A0 V	7.7	0.0032
Fomalhaut	A4 V	7.7	0.0008

There are a few of stars d < 10 pc where LBTI (LMIRCam) **could** detect a super-earth > 5 λ /D with sensitivity L_{flux} > 10 μ J.

Mid-IR Emission: Earths in Sun-like "Sweet Spot"

Kepler stats (Howard et al. 2012) + instrument model gives estimate # of detectable Super-Earths around nearest stars.

Quanz, Crossfield, Meyer et al. (2015) NB: Pole-on better targets!

Super-earth yield from mid-IR? Background/Star ~ 10⁻⁶

See Hinz et al. (astro2010 white paper) and Quanz et al. (2015)

Characterization with High Resolution Spectra: G-CLEF (GMT) as well as HIRES & METIS (E-ELT)

Brown dwarf doppler imaging CRIRES Wind speeds on planets with CRIRES Crossfield et al. (2014) Snellen et al. (2014)

HIRES@E-ELT: Red Transmission O₂ Spectra

Reflected Light: EPICs@E-ELT (Kasper et al. 2010; cf PFI@TMT)

Hot Proto-planet Collision Afterglows: Terrestrial Planets in Formation

Stern (1994); Mamajek & Meyer (2007); Miller-Ricci, Meyer, Seager, & Elkins-Tanton (2009); Lupu et al. (2014)

The ELT Thermal Imaging Discovery Space

The ELT Thermal+Reflected Discovery Space

ELT Thermal + Reflected + "Terrestrial Wedge"

Thermal + Reflected + "Wedge" + Hot PCAs

So what does this mean?

First super-earth planet may be detected in thermal emission by ELTs before 2030.

ELTs will further characterize spectroscopically and polarimetrically in reflected light.

RV detected planets in M dwarf habitable zones:

- . UV/optical coronagraph in reflected light.
- . mid-IR high-precision photometer?

Bottom-line: Space-based IR interferometer (> 300 meter bl with 4 x 2 meters area) or UV/optical > 8m needed to characterize the diversity of worlds around Sun-like stars.

Space-based mid-IR interferometer (based on Kepler statistics + 600 meter 4 x 2 meter)

Space-based mid-IR interferometer (based on Kepler statistics + 600 meter 4 x 2 meter)

