Exoplanet atmosphere characterisation with the JWST Mid InfraRed Instrument (MIRI)

P.-O. Lagage AIM, CEA Saclay MIRI EC consortium

MIRI is a 50%-50% Europe-US share project PI's G. Wright (ATC, UK), G. Rieke (Arizona University)

A 5 to 28 μm imager and spectrometer (The only JWST instrument in this λ range)

Opto mechanics + tests in Europe by a nationally funded consortium of European Institutes

Detector and cryocooler In US (JPL) Unlike the other JWST instruments, MIRI has to be cooled to 7K → Dedicated cryocooler

Main molecules have bands in the Mid-IR

MIRI European Consortium

Molecule	$\Delta v = 2B_0$ cm ⁻¹	λ (S _{max}) 2–5 μm	S_{max} cm ⁻² am ⁻¹	<i>R</i> 2–5 μm	λ (S _{max}) 5–16 μm	S_{max} cm ⁻² am ⁻¹	<i>R</i> 5–16 μm
H ₂ O	29.0	$2.69(v_1, v_3)$	200	130	6.27 (v ₂)	250	55
HDO	18.2	$3.67(v_1, 2v_2)$	270	150	$7.13(v_2)$		77
CH ₄	10.0	3.31 (v ₃)	300	300	7.66 (v ₄)	140	130
CH ₃ D	7.8	4.54 (v ₂)	25	280	8.66 (v ₆)	119	150
NH ₃	20.0	2.90 (v ₃)	13	170	10.33	600	50
		$3.00(v_1)$	20		$10.72 (v_2)$		
PH ₃	8.9	$4.30(v_1, v_3)$	520	260	8.94 (v ₄)	102	126
1944					$10.08 (v_2)$	82	110
CO	3.8	4.67 (1-0)	241	565	Children I.		
CO ₂	1.6	$4.25(v_1)$	4100	1470	$14.99(v_2)$	220	420
HCN	3.0	$3.02(v_3)$	240	1100	$14.04(v_2)$	204	240
C ₂ H ₂	2.3	3.03 (v ₃)	105	1435	$13.7 (v_5)$	582	320
C_2H_6	1.3	3.35 (v7)	538	2300	$12.16(v_{12})$	36	635
O ₃	0.9				9.60 (v ₃)	348	1160

Table 5 Main molecular signatures and constraints on the spectral resolving power. Δv is the spectral interval between two adjacent J-components of a band. S_{max} is the intensity of the strongest band available in the spectral interval. *R* is the spectral resolving power required to separate two adjacent J-components

From Tinetti et al. AAR 2013

Not by lack of interest but by lack of facilities

For transisting planets, spectra of only **2 giant** bright exoplanets : HD 189733b, HD 209458 (cold Spitzer)

+ photometry of a few dozen of transiting exoplanets expecially at 3.6 and 4.8 microns (warm Spitzer)

For direct imaged exoplanet: nothing

(Spitzer not the angular resolution and ground-based lack of sensitivity)!

Emission spectra of HD 189733b

MIRI European Consortium

Transmission spectra of HD189733b

MIRI European Consortium

McCullough et al. 2014 and references there-in

No much observations ...

but a lot of predictions !

A few examples

MIRI detection of CO₂ in Super-Earth emission?

Deming et al. (2009) showing Miller-Ricci (2009) Super-Earth Emission spectrum and MIRI filters

- JWST MIRI filters (red boxes, left) may detect deep CO2 absorption in Super-Earth emission observations if hosts are nearby M dwarfs.
- Modeling shows that modest S/N detections possible on super-Earth planets around M stars IF data coadd well (Deming et al. 2009).
- Could detect CO2 feature in ~50 hr for ~300-400K 2 R_e planet around M5 star at 10 pc: IF the data SNR improves with co-additions

SuperEarth with mineral atmosphere : Si0 band at 10 microns

Y. Ito et al ApJ 2015; talk here by M. Ikona

Phase curve of an exoplanet in the habitable zone of a M star

MIRI European Consortium

FIG. 3.— Thermal phase curves of tidally locked planets. (a) phase curves for different atmospheres with stellar flux fixed at 1200 W m^{-2} : airless, dry-air, water vapor, and water vapor phase clouds, (b) phase curves for a full atmosphere including water vapor and clouds for different stellar fluxes: 1400, 1600, 2000 and 2200 W m⁻². The error bar in (b) is the expected precision of the James Webb Space Telescope for observations of a nearby super-Earth. The surface albedo for the airless and dry-air cases is 0.2. The orbital period is 60 Earth-days.

1ppm : very challenging; systematics, stellar variability

Prediction is fine

but a key lesson at this conference for me is:

Explore

search for anomalies !

MIRI will take its share!!!

Not really optimized for exo-planets (conceived a long time ago); but telescope better than Spitzer (for example good stability at L2); adaptations made possible at the level of instruments

From Spitzer

Telescope size : 85 cm

Amazing Photometric precision (about 10⁻⁴)

To JWST

Telescope size 660 cm

At the same photometric from photometry (R=2) to spectroscopy Need enhanced photometric precision

MIRI European Consortium

www.stci.edu/jwst/science/sensitivity

A huge increase in angular resolution

MIRI European Consortium

Vega disk from SIRTF (simulated)

Vega disk from MIRI/JWST (simulated)

George Rieke

Direct imaging thanks to coronographic

Exoplanets detected by direct imaging are of a different type than exoplanets from transit: giant, young → still cooling

→ Luminosity can constrain the planet formation theory But model degenerescence

→ further constraint from atmospheric composition

The MIRI Focal Planes (Entrance + Detector)

10 papers about MIRI in PASP 2015 in press

The Mid-Infrared Instrument for the James Webb SpaceTelescope

I: Introduction, G. H. Rieke, G. S. Wright, T. Boker et al.

- II: Design and Build, G. S. Wright, D. Wright, G. B. Goodson, et al.
- III: MIRIM, the MIRI Imager, P. Bouchet, M. Gacia Marin, P.O. Lagage et al.

IV: The Low Resolution Spectrometer, S. Kendrew, S. Scheithauer, P. Bouchet et al.

V: Predicted Performance of the MIRI Coronagraphs A. Boccaletti, P.O. Lagage, P. Baudoz et al.

VI:The Medium Resolution Spectrometer, Martyn Wells, J.-W. Pel, A. Glasse et al.

VII: The MIRI Detectors, G. H. Rieke, M. E. Ressler, J. E. Morrison et al.

VIII: The MIRI Focal Plane System, M. E. Ressler, K. G. Sukhatme, B. R.

Franklin et al.

20

IX: Predicted Sensitivity, A. Glasse, G. H. Rieke, E. Bauwens et al.

X: Operations and Data Reduction, K. D. Gordon, C. H. Chen, R. E. Anderson et al.

A special mode added for transiting exoplanets

MIRI European Consortium

Telescope jitter 7 mas (1sigma) very low, but slitless needed In addition only part of the array read (68x416) \rightarrow saturation:K m = 5.5 - 6

22

The MIRI Medium résolution spectrometer

MIRI European Consortium

Webb SpaceTelescope VI: The Medium Resolution Spectrometer, PASP, in press

MIRI Medium Resolution Spectrometer

30

4 Spectral Channels with . concentric fields of view

along slices (arcsec)

Field of view -7

Across slice

(Slice width)

[arcsec]

0.18

0.28

0.39

0.64

Channel

Name

1

2

3

2

Martyn Wells, J.-W. Pel, A. Glasse et al.: The Mid-Infrared Instrument for the James Webb SpaceTelescope VI:The Medium Resolution Spectrometer, PASP, in press

The MIRI Focal Plane Modules

The MIRI focal planes were produced by Raytheon Vision Systems (RVS) for JPL, where they have been mounted into focal plane modules that can be bolted to the OM. Each detector array is 1024 X 1024 pixels of Si:As IBC devices. The FPMs provide shielding and thermal isolation to allow annealing.

M. E. Ressler, K. G. Sukhatme, B. R. Franklin et al. Martyn Wells, J.-W. Pel, A. Glasse et al.: **The Mid-Infrared Instrument for the James Webb SpaceTelescope VI: VIII: The MIRI Focal Plane System,** PASP, in press

MIRI European Consortium

Parameter	baseline array	contingency array		
format	$1024 \ge 1024$	$1024 \ge 1024$		
pixel size	$25 \ \mu m$	$25 \ \mu m$		
IR-active layer thickness	$35~\mu{ m m}$	$30 \ \mu m$		
IR layer As doping	$7 imes 10^{17} \ \mathrm{cm}^{-3}$	$5 \times 10^{17} \mathrm{~cm^{-3}}$		
read noise*	$14 e^{-}$	$14 e^-$		
dark current	$0.2 e^{-}/s$	$0.07 e^{-}/s$		
quantum efficiency ^{**}	$\geq 60\%$	$\geq 50\%$		
nominal detector bias***	2.2V	2.2V		
well capacity	$\sim 250{,}000~{\rm e^-}$	$\sim 250{,}000~{\rm e^-}$		

M. E. Ressler, K. G. Sukhatme, B. R. Franklin et al. Martyn Wells, J.-W. Pel, A. Glasse et al.: **The Mid-Infrared Instrument for the James Webb SpaceTelescope VI: VIII: The MIRI Focal Plane System,** PASP, in press

28

Down to 10 ppm (or more) → **photometry stability**

Can be optimistic as JWST should be more stable than HST and SPITZER (cf M. Clampin)

In addition, a lot of work on characterization/tests at the instrument level (especially detectors at JPL, M. Ressler et al.)

Delay in the launch has helped!

The observations can be at three wavelengths (10.65, 11.4 and 15.5 microns), which have been chosen to detect the NH3 feature at 10.65 microns, which can probe the temperature of the object.

WIRI European When we started MIRI, last century ... Consortium

Planets studied by direct imaging: today Consortium

MR

List of sources for direct imaging

# name	e mass	radius	semi_maj or_axis	angular_distance (arcsec)	temp_measured	temp_unc ert	log_g	molecule
1RXS 1609 b	14	1,7	330	2,275862	1800	200	4	H2O, CO, K
2M 0122-2439 b	2	1	52	1,5	1600	100	4,5	
2M 0219-3925	13,9	1,44	156	3,96	1683	43	4,24	
2M1207 b								
	4	1,5	46	0,877863	1000	null	4	
AB Pic b	13,5	1,22	275	5,813953	2000	200	4	
CT Cha b	19	2,2	440	2,666667	2500	100	3,5	
FW Tau (AB) b	10	0,21	330	2,3	2000	100	nul	
Fomalhaut b	3	1,2	115	14,92731	400	50	nul	
GJ 504 b	4	null	43.5	2,48 en movenne	510	30	3.9	CH4
GJ 758 b	35	null	44,8	3,516129	600	100	4,5	CH4
	from 8 to		7-	-,			,-	
GQ Lup b	60	3	103	0,735714	2400	100	4	
							intermediate- gravity L2.5	
HD 106906 b	11	null	654	7,71	1800	100	± 1	
HD 95086 b	5	1,3	61,5	0.6	1050	450	3,3	
HR 8799 b	7	1,2	68	1,725888	900	null	4	CH4, H2O, CO
HR 8799 c	10	1,3	42,9	1,088832	1000	null	4	
HR 8799 d	10	1,2	27	0,685279	1000	null	4	•
HR 8799 e	9	null	14,5	0,36802	1000	null	4	
PZ Tel b	21 1	null	20	0,3	2500	130	3,5	
ROXs 12 b	16	null	210	17	null	null	nul	
		indii	2.0	.,.				
ROXs 42B (AB) b	10	2,5	140	1,1	2200	400	4	CO, H2O, K
VHS 1256-1257 b	11,21	null	102	8,06	880	140	4,24	
beta Pic b	7	1,76	9,04	0,440415	1550	150	3,5	н
kappa And b	14	1,2	55	1,058	1900	150	4,5	
CD 1945 b	45	0.7	4 5	1 160004	1000	100	-	
SUR 1845 D	45	0,7	4,5	1,168831	1000	100	5	

MIRI European Consortium

Not so many so far about 20 targets

More to come from Sphere, GPI?

A few as outliers : like GJ504b Temperature: 500 K Mass: 4 Jup masses Far enough (2.5 arcsec) to make direct MRS observations

Some with masses > 13 Jup mass

From exoplanet encyclopedia

Link with sub-stellar objects

Bridge between stars and exoplanets (cf Hans talk)

improve the theoretical models, meteorology in their atmospheres, characterization of the properties of proto-brown dwarfs.

Figure 3: The 0.65-14.5 μ m spectra of GJ 1111 (M6.5 V), 2MASS J1507- 1627 (L5), and 2MASS J0559_1404 (T4.5). The red optical spectra are from Kirkpatrick et al. (1991), Reid et al. (2000), and Burgasser et al. (2003), and the nearinfrared spectra are from Cushing et al. (2005) and Rayner et al. (2006). The spectra have been normalized to unity at 1.3 μ m and multiplied by constants. The CIAH₂ absorption is indicated as a dashed line because it shows no distinct spectral features but rather a broad, smooth absorption (from Cushing et al., 2006).

MIRI European GTO exoplanets about ¼ of the times : 100-110 hours

Team

Olivier Absil; David Barrado; Anthony Boccaletti; Jeroen Bouwman; Leen Decin; Daniel Dicken; René Gastaud; Alistair Glasse; Adrian Glauser; Manuel Guedel; Tomas Henning; Inga Kamp; Oliver Krause; Fred Lahuis; Pierre-Olivier Lagage (coordinator) Migo Mueller; Cyrine Nehme; Goran Olofsson; Eric Pantin ; John Pye; Daniel Rouan; Pierre Royer; Silvia Scheithauer; Bart Vandenbussche; Helen Walker; Rens Waters (co-coordinator)

In close coordination with Tom Greene (US)

Collaboration in progress with other GTO holders

GTO time for JWST : about 4000 hours

 $\frac{1}{4}$ \rightarrow typically 1000 GTO hours of JWST for exoplanet

More time for exoplanets?

Highly competitive

« We should be organized to compete with well organized communities, such as cosmologists, in order to get our share (1.25 (+ 1.25) years) » Chas Beichman

Not do what can be done more efficiently with a small mission such as Ariel (1.95 - 7.8 microns) (see G. Tinetti talk)

→ Spend a large amount of time on low mass temperate exoplanets, if first observations confirm the feasability (Cowan et al. 2015)

In any case MIRI observations unique!

