

Missions and Technology in NASA's Exoplanet Exploration Program:

Stephen C. Unwin Deputy Program Scientist NASA Exoplanet Exploration Program July 16, 2015

> Pathways 2015: Pathways Towards Habitable Planets Bern, Switzerland

Where will exploration take us in 100 years? Introducing the *Exoplanet Travel Bureau*

NASA Astrophysics Documents

http://science.nasa.gov/astrophysics/documents

What is the Purpose of the Program?

Described in 2014 NASA Science Plan

Exoplanet Exploration Program

- 1. Discovering planets around other stars
- 2. Characterizing their properties
- 3. Identifying candidates that could harbor life

- Nexus for Exoplanet System Science (NExSS)
 - A NASA HQ research coordination network with an emphasis on studying planetary habitability
 - Unprecedented coordination between ALL 4 divisions of NASA's Science Mission Directorate (Astrophysics, Earth Sciences, Heliophysics, Planetary Sciences)
 - NASA identified 17 teams with synergistic research interests that were already funded by grants awarded through ROSES competitions
 - Initiative lead by: Mary Voytek (NASA HQ, Astrobiology), Shawn Domagal-Goldman (GSFC) and Co-Chairs: Natalie Batalha (ARC), Tony Del Genio (GISS), Dawn Gelino (NExScl)
- Exoplanet studies are inherently interdisciplinary, and by working together, we can work more efficiently to answer one of humanity's oldest questions: Are we alone?

The Exoplanet Exploration Program

Extreme Precision Doppler Spectrometer

The Program relies on the Scientific Community

Active teams and committees:

- ExoTAC (Technology Assessment Committee) Chair: A. Boss, Carnegie Institution
- WFIRST/AFTA SDT (Science Definition Team) Chair: D. Spergel, Princeton University
- STDTs (Science and Technology Definition Team) One each for:
 - Exo-C (Probe Coronagraph) Chair: K. Stapelfeldt, GSFC
 - Exo-S (Probe Starshade) Chair: S. Seager, MIT
- ExoPAG (Program Analysis Group)
 Chair: A. Boss, Carnegie Institution of Washington

Key Exoplanet Science Questions

- 1. Discovering Planets: How abundant are exoplanets in our Galaxy?
 - Radial Velocity
 - Transit Photometry
 - Microlensing

- <1 m/s
- < 10 parts per million

< 100 parts per million

- Exoplanet populations and demographics
- 2. Characterizing Planets: What are the (large) exoplanets like?
 - Transit Spectroscopy
 - Direct Imaging
 - High Contrast < 1E-9 (after post-processing)
 - Small Inner Working Angle < 500 mas (<200 mas)
 - Spectroscopy

- R~40 in visible, near infrared (water lines)
- 3. "Pale Blue Dots": Are the planets habitable? Are there signs of life?
 - Transit Spectroscopy < 1 part per million
 - Direct Imaging
 - High Contrast
 - Small Inner Working Angle
 - Spectroscopy
 - η_{Earth}
 - Exozodiacal Dust
 - Yield

- < 1E-10 (after post-processing)
- < 100 mas (<40 mas)
- R~70 in visible, near infrared Quantify, for mission design Quantify, for mission design Ideally: dozens of rocky planets
- (biosignature gases)

Current Exoplanet Science Missions

Kepler Space Telescope

- **PI:** W. Borucki, NASA Ames Research Center
- Launch Date: March 6, 2009
- Science Data Collection through May 2013
- Final processing of full data set underway

Kepler (K2) is now observing 80-day windows in the ecliptic

Transiting Exoplanet Survey Satellite

Launch Vehicle

CŚS

Observatory

- SpaceX Falcon 9 v1.1
- High Earth Orbit (HEO)
- 2:1 Resonance with Moon's Orbit
- Orbital LEOStar-2
- Instrument-in-the-loop attitude control
- Four Wide Field-of-View CCD Cameras
- 24°x 24°Field-of-View

Science Instrument

Well defined spacecraft interfaces

Project Overview

- Transiting exoplanet discovery mission
- 2 month Commissioning period
- 2 year all-sky survey (3 year science mission)
- Identifies best_targets for follow-up characterization
- Deep Space Network (DSN) primary support
- Category II, Class C
- Planned Launch Readiness Date: August 2017
- PI Cost Cap: \$228.3 M (RY\$)

Orbital ATK

WFIRST / AFTA

Wide-Field Infrared Survey Telescope (WFIRST) Astrophysics Focused Telescope Assets (AFTA)

> Goddard Space Flight Center Jet Propulsion Laboratory STScl NExScl

WFIRST / AFTA Microlensing survey completes the census begun by Kepler

Wide-field Instrument

- H4RG detectors (Qty 18)
- Wavelength: 0.6 to 2.0 micron
- FOV: 0.28 deg²

Wide-field Instrument Science

- Dark Energy
- Infrared Survey
- Microlensing survey for exoplanets

WFIRST / AFTA Coronagraph Direct Imaging of Exoplanet Nearest Neighbors

Coronagraph Instrument

- Imaging and spectra channels
- 0.4 1 μ m bandpass
- $\leq 10^{-9}$ detection contrast
- 100 mas inner working angle at 0.4 μm
 R ~ 70

Coronagraph Science

- Imaging and spectroscopy of exoplanet atmospheres down to a few Earth masses
- Study populations of debris disks

Coronagraph will develop the technologies for a future exo-Earth mission

WFIRST Coronagraph images cool gas and ice giants

Probe-Scale studies:

High-Contrast Imaging

Exo-C:

Internal Occulter (Coronagraph)

K. Stapelfeldt, STDT Chair, GSFC

Exo-S:

External Occulter (Starshade)

S. Seager, STDT Chair, MIT

Enabling the Exo-Future:

Technology Development

See: ExEP Technology Plan Appendix:

http://exep.jpl.nasa.gov/technology/

Technology Development for Coronagraphs

Xinetics

e2v Electron Multiplying CCD

Starshade for a 2.4m telescope

34 meter diameter

Primary bandpass: 600 – 850 nm Raw contrast: 1 × 10⁻¹⁰ IWA: 100 milliarcsec

35,000 km

2.4 meter telescope

ExoPlanet Exploration Program

Example of Science from Starshade with 2.4m telescope

- Observe 52 stars in 2 years
- 13 known exoplanets
- 19 HZ targets. Expect
 ~ 2 Earths or Super-Earths
- Can detect sub-Neptunes to Jupiters around all HZ targets and 20 additional stars

Exo-Earths require large telescopes

Stark et al, 2014 For Coronagraphs

- Yield most sensitive to (in order):
 - Telescope diameter
 - Coronagraph inner working angle
 - Coronagraph contrast
 - Coronagraph noise floor
- Also sensitive to η_earth (strong) and exozodical dust (relatively weak)

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements

This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

© 2015 Copyright California Institute of Technology Government sponsorship acknowledged