PATHWAYS TOWARDS EXOMOONS

Brief Outline

- Big thank-you to our 10 speakers (Kane, Hong, Perets, Dobos, Forgan, Kisiyakova, Lacy, Kipping, Haghighipour, Beaulieu)
- Exomoons are coming, we aim to build an interested community through our meeting
- 3 main topics: i) formation \& evolution ii) habitability iii) detection
- We will post slides pending agreement from speakers at www.exomoon.org
~habitable zone

FORMATION \& EVOLUTION Kane: Sol Sys Moons as Exoplanet Analogs

Kane: Sol Sys Moons as Exoplanet Analogs

FORMATION \& EVOLUTION

 Hong: Exomoon Survivability after Close Planet-Planet Encounters- planet-planet scattering reproduces observed exoplanet eccentricity - will their moons survive?
- moon survival vs planet observables: semi-major axis, ecc, inc, mass => can predict moon survival rates and place upper bounds on moon semi-major axis

FORMATION \& EVOLUTION

Hong: Exomoon Survivability after Close Planet-Planet Encounters

- planet-planet scattering reproduces observed exoplanet other cases (e.g. eccentricity - will their moons survive?
- moon survival vs planet observables: semi-major axis, ecc, inc, mass => can predict moon survival rates and place upper bounds on moon semi-major axis astrocentric orbit)
- favourable conditions for survival: low inc \& ecc, less migration, attached to massive planets and less frequent/more distant planet-planet encounters

FORMATION \& EVOLUTION Perets: Formation \& Evolution of (Exo)moons

- Solar system moons of the gas-giants, (including retrograde small moons), may have all formed through in-situ formation
- Capture scenarios might not be needed

Inclined moons formed as regular satellites + moon-moon scattering

FORMATION \& EVOLUTION Perets: Formation \& Evolution of (Exo)moons

- Solar system moons of the gas-giants, (including retrograde small moons), may have all formed through in-situ formation
- Capture scenarios might not be needed
- Large Mars-size moons can form in more massive circumplanetary disk, which would suggest the possibility of large exomoons around more massive planets
- Moons of migrating planets are less likely to survive, even in the inner regions

Inclined moons formed as regular satellites + moon-moon scattering

EXOMOON HABITABILITY

Dobos:Viscoelastic Tidally Heated Exomoons Circumplanetary HZ

for Sun-like stars

Stellar irradiation
$+$
tidal heating

Jupiter-like planet $+$

Earth-like moon

Outer limit: maximum greenhouse Inner limit: runaway greenhouse

EXOMOON HABITABILITY
 Forgan: Climate Models of Earthlike Exomoons
 Forgan and Kipping (2013), Forgan and Yotov (2014), Forgan, Dobos and Turner (in prep).

- Exomoon HZ are complex and multimodal
- Circumplanetary HZs have an inner and an outer edge
- This is due to a combination of eclipses and ice albedo feedback

EXOMOON HABITABILITY Kisiyakova: Stability of Exomoon Atmospheres

H. Lammer, K.G.Kislyakova, N.V. Erkaev,
I. Juvan,
P. Odert,
M. Güdel

Summary of the study: Lammer et al., OLEB, 2014, 44, 239

Lacy: Spectroastrometric Detection of Exomoons

Signal: $\left|\operatorname{Centroid}\left(\lambda_{\text {planet }}\right)-\operatorname{Centroid}\left(\lambda_{\text {moon }}\right)\right|$

0.35um

2.69um

Earth-Moon around Alpha Centauri (I2m space telescope with perfect coronograph for 24h)

Lacy: Spectroastrometric Detection of Exomoons

Signal: $\left|\operatorname{Centroid}\left(\lambda_{\text {planet }}\right)-\operatorname{Centroid}\left(\lambda_{\text {moon }}\right)\right|$

0.35um

2.69um

Earth-Moon around Alpha Centauri (I2m space telescope with perfect coronograph for 24h)

DETECTION OF EXOMOONS Lacy: Spectroastrometric Detection of Exomoons

DETECTION OF EXOMOONS

 Kipping:The Hunt for Exomoons with Kepler (HEK) project Kipping:The Hunt for Exomoons with Kepler (HEK) project

 \section*{DETECTION OF EXOMOONS}
 \section*{DETECTION OF EXOMOONS} Beaulieu:A Microlensing Exomoon Candidate

DETECTION OF EXOMOONS

 Beaulieu:A Microlensing Exomoon Candidate
Mode I

$$
\text { Mode } 2
$$

Free floating 5 M J
Jupiter with a sub-Earth moon
@ 500pc

Late M-dwarf with a subNeptune mass planet @ high velocity

No hope to distinguish with current data (if we'd had a parallax could have solved) Mass-ratio $=510^{-4}$

FINAL THOUGHTS

v Is there a plausible pathway for the formation \& evolution of big (Earth-like) moons?

- Planet migration/encounters are bad for moons
- Exomoons have complex, multi-dimensional "habitable-zones". Tides \& atmospheric loss are major concerns.
- Is the current data on exomoons consistent with theoretical expectations?

