Mapping Other Worlds Satellite Session Summary

Organizers: Daniel Apai and Nick Cowan

Speakers:

Esther Buenzli, MPIA (Invited Review) Daniel Apai, U Arizona Theodora Karalidi, U Arizona

Julien de Wit, MIT (Invited Review) Nadine Afram, Kiepenheuer Institute

Yuka Fujii, ELSI Tokyo (Invited Review) Joel Schwartz, Northwestern University Nick Cowan, SSI/McGill

Mapping Other Worlds: Spatial Studies of Exoplanets and Ultracool Atmospheres

Brown Dwarfs Transiting Exoplanets Future Directly Imaged Earth-like Planets

Mapping Brown Dwarfs

Esther Buenzli Max Planck Institute for Astronomy

Mapping Other Worlds - Satellite Session Summary

Pathways II 2015

T6.5 dwarf 2M2228

Mapping Other Worlds - Satellite Session Summary

Daniel Apai

Apai, Radigan, Buenzli et al. 2013

1.02

1.00

<u>ج</u> 89.01

1.04 O

1.02 급

1.00

0.98

0.96

0.94

Vormalize

Luhman 16B – variability

Ground-based, unresolved

Gillon et al. 2013

Buenzli et al. 2015, Buenzli et al. in prep.

6

 First spectral maps of an ultracool atmosphere
 Warm Thin - Cooler Thick clouds

3) Only a single type of thick cloud4) Spectral signature of the difference

Apai, Radigan, Buenzli et al. 2013; Buenzli et al. 2015; Buenzli et al. 2015 in prep.

Extrasolar Storms: Mapping Silicate Storms

Dániel Apai Steward Observatory and Lunar and Planetary Laboratory University of Arizona

Mapping Other Worlds - Satellite Session Summary

5 Hubble Space Telescope programs PI Daniel Apai, ~220 orbits

Including:

Cycle-9 Extrasolar Storms PI: Daniel Apai 1,144 Spitzer hours + 24 HST orbits

Cloud Atlas: Large Treasury Program PI Daniel Apai, 112 orbits

Daniel Apai

Yang, Apai et al. 2015 ApJ

Water-band Amplitude as Cloud Depth Probe

Yang, Apai et al. 2015 ApJ

D. Apai

Clouds form in Updraft

Water-band Amplitude as Cloud Depth Probe

First spectral maps of L dwarfs
 No reduced amplitude in the water band
 High haze in L dwarfs, deeper clouds in L/T dwarfs

Yang, Apai et al. 2015 ApJ

What Physical/Chemical Processes Drive the Light Curve Evolution in Brown Dwarfs?

Extrasolar Storms

Exploration of Atmospheric Dynamics in Brown Dwarfs PI: Apai (1,144 hour Spitzer + 24 HST orbits)

Lightcurves Sampling Multiple Timescales

Extrasolar Storms Preliminary Results
I) All six targets variable
2) All show LC evolution
3) LC evolution timescale ~P_{rot}

Mapping Ultracool Atmospheres with Aeolous

MCMC mapping code

Assume heterogeneities are elliptical spots (e.g. Great Red Spot)

Number of spots Location on disk Size of spot Contrast ratio to background TOA Inclination of brown dwarf/ (exo)planet Limb darkening

Karalidi, Apai et al., in prep.

Schneider and Vedovato

Mapping Other Worlds - Satellite Session Summary

FIG. 5.— Normalized R (red) and U (blue) light curves of Jupiter. The uncertainties in the relative photometric measures (e are estimated as $1\sigma \leq 0.022\% \pm 0.009\%$ of the measured signal in either filter band. Corresponding snapshot images of Jupiter band (top) and U band (bottom) are shown for helping the reader interpret the light curves.

2.0

Mapping Transiting Planets

How to Map Planets?

Monitoring the system flux variation over:

- Time
 - 1. Phase-curve mapping (longitude)
 - 2. Eclipse mapping (longitude & latitude)
- Wavelength
 - 3. Multi-wavelength phase-curve mapping (altitude & longitude)
 - 4. Multi-wavelength eclipse mapping (altitude, longitude & latitude)

Pathways II 2015

How to Map Planets?

1. Phase curves

Figure from Winn (2010).

1. Phase curves

12

3. Multi-channel phase curves

3. Multi-channel phase curves

Figure from Stevenson et al. (2014).

Effects of Clouds on Reflection Properties of Hot Jupiters

Nadine Afram *Kiepenheuer Institute*

Daniel Apai

Clouds important in exoplanetary atmosphere
model molecular spectra with/out clouds
vary cloud parameters (dust density, dust size, cloud position, cloud extension)
study changes in molecular signal due to cloud parameter change, as molecules are formed at different depths => info about cloud

10 nm dust size

Mapping Earth-like Planets

Heterogeneous Surfaces !

Daily Variation of Disk-Integrated Colors of Earth

※ NASA's EPOXI mission, Scattered light in UV/VIS/NIR

Daily Variation of Disk-Integrated Colors of Earth * NASA's EPOXI mission, Scattered light in UV/VIS/NIR

AGENDA

How can we retrieve surface characteristics properly from these data?

Mapping from **Daily** Color Variation

input: EPOXI data of the Earth ₩

• Mapping of "Red" Component

Figure 10. Aitoff projection showing the land distribution on Earth in a cloudfree MODIS map (top panel) and the distribution of land as determined from the June disc-integrated EPOXI light curves (bottom panel). The EPOXI map has a longitudinal resolution of approximately 60° ; it has no latitudinal resolution, but is weighted toward the equator due to viewing geometry.

Cowan et al. (2009, 2011)

• Assuming a surface composed of clouds/ocean/snow/soil/vegetation

Fujii et al. (2010, 2011)

Finding "Unmixed" Colors

Mapping from Yearly Color Variation : SOT

video from YouTube: https://www.youtube.com/watch?v=9n04SEzuvXo

- spin rotation moves longitude of sub-stellar/sub-observer point
- orbital motion —moves <u>latitude</u> of sub-stellar/sub-observer point
 → 2D scan of surface (spin-orbit tomography: SOT)

Kawahra and Fujii (2010, 2011), Fujii and Kawahara (2012)

____90

Inferring Obliquity from the Kernel of Reflection

Daniel Apai

Viewing Geometry Determines the Orbital Evolution

Takeaways...

• Kernel: Width & Dominant Latitude

Obliquity: Encoded in Characteristics

Pro/Retrograde Spin:
 Specific Degeneracy

Cloud-free Maps of Exoplanets

Nick Cowan Amherst College / SSI / McGill

Daniel Apai

Pathways II 2015

Cloud-Free Maps of Exoplanets (work in progress)

Nick Cowan (Amherst -> SSI -> McGill)

Key Points:

Brown Dwarfs: Rich data on cloud types, properties, depth, structure, dynamics

2D Constraints/map already published 3D Maps and Time-evolving 3D maps are in the works

Hot Jupiters: 2D and 3D maps emerging

Future Earth Observations: 2D maps possible, identification of oceans, continents, ice/cloud, vegetation, obliquity

No Specially Designed Telescopes are Necessary